
Transaction Processing With
General-Purpose Servers
How Solid Data File Caching Technology Delivers Real-Time
Transaction and Messaging Performance

May 2002

by Solid Data Systems, Inc.

®

Table of Contents

Executive Summary 1

Messaging and Transactions - The Need For A New Architecture 2

 Case Study: File Cache Triples SMS Performance 4

Solid Data File Cache - Designed for Transactions and Messaging 5

Advantages Over Traditional Approaches to Transaction Performance Improvement 6

 Case Study: File Cache Speeds up Trading 10

Optimizing Results with File Cache - Design Guidelines 11

Summary 12

Executive Summary

We live in an age of rapidly expanding global commerce and communications. For

example, roughly half the world's 900 million total users of wireless devices currently

use text messaging to generate 55 billion text messages per month, and adoption is

growing explosively. Merrill Lynch projects that by 2005, total message traffic

worldwide will exceed 400 billion messages per month as customers use their mobile

devices for everything from checking train schedules to purchasing their tickets.

Likewise, the Internet continues to drive e-commerce in industries such as banking and

securities. The Securities Industry Association (SIA) reports that average daily stock

trades grew from 150 million transactions in 1995 to 350 million in 1999 _ a trend that

continues unabated, in transactions and total volume.

Driven by ever-greater pressure to outdo competitors in functionality and features,

service providers are simultaneously forced by ever-lower consumer prices to keep

expenses low. As the workload from new services and expanding customer bases grows,

so does the need for providers of messaging and transaction services to build an

infrastructure capable of supporting it _ in real time and cost-effectively.

Messaging and transaction processing inherently require data persistence, high

availability, scalability and performance. Not only that, systems must constantly handle

large amounts of random data with heavy peak loads, a formidable performance

challenge in itself. Historically, efforts to address these issues have been less than

successful because the available tools have lacked one or more of these key capabilities.

File cache, using Solid Data's solid-state disk (SSD) technology, offers a new, on-target
approach to these issues. Already delivering significant benefits to current users, it opens
up new possibilities for still better performance in the future. The goal of this white
paper is to show application architects and IT staff how to take advantage of these
capabilities.

1

Messaging and Transactions — The Need For
A New Architecture

High-speed transactions were once the sole domain of mainframes. Now, however, as

electronic commerce is handled at "transaction aggregation points" on global networks,

transaction workloads are moving increasingly to midrange Unix and high-end Windows

2000 systems using client-server, distributed computing architectures.

Abundant developer populations, scalable distributed architecture, and lower cost of

ownership make these systems the dominant choice for communications, financial

services, and many database applications. Unfortunately, while they offer many

advantages over centralized mainframe computing, they are not well suited to the highly

variable, high-volume, random-access nature of messaging and transactions. For

example, the volume of messages at a wireless Short Message Service (SMS) gateway

can exceed 40 million per day, most handled during a few peak periods.

Under such conditions, the limitations of the general-purpose server's I/O and memory

subsystems become the system's Achilles Heel. Even under the best of conditions, the

slow mechanical access times of disk systems "waste" 70-90 percent of available

processing power. The result is highly inefficient processing that requires a larger

number of faster, more expensive servers to handle the load.

While it is common to add server memory to solve this problem, memory's

susceptibility to data loss during power outages and server crashes makes this approach

unsuitable for such business-critical transactions as trading, electronic payment,

messaging, or mobile-commerce applications.

Figure 1. CPU Utilization

Source: Solid Data measurement

of large email system workload

over 24-hour period

2

100

80

60

40

20

%
 C

P
U

 L
oa

d
%

 C
P

U
 L

oa
d

System

Time

I/O Wait = 40% of CPU TimeI/O Wait = 40% of CPU Time

I/O Wait

User
0

Thus, in general-purpose Unix and Windows 2000 server architectures, dual

requirements for transaction speed and persistence are fundamentally at odds. For these

applications, high-speed random access is essential, but it is equally critical to ensure

protection of such data as messages and business transactions. This mandates persistent

memory.

Also crucial to these applications is high availability _ 24x7 operations and worldwide

access demand reliability, redundant design, and serviceability. Simple, easy-to-manage

infrastructure offers significant management and maintenance-cost advantages over

more complex alternatives. Moreover, as the volume of messaging traffic and

transactions grows at an explosive rate, it is vital that a system can be scaled upwards to

handle larger workloads without disrupting operations.

The ideal solution would include "persistent memory"_ storing data in a solid-state

device that:

 • Provides random access with memory-like speed

 • Protects data in the event of power loss

 • May be shared among multiple servers

 • May be added easily onto conventional servers to deliver order-of-magnitude

 performance improvement.

As a rule, any transaction-intensive applications that handle "business-critical" data (i.e.,

data that has large cost associated with its loss) with high peak loads are good candidates

for file cache.

File Cache: Using SDRAM technology and an architectural approach called file cache,

Solid Data has developed a new, on-target approach to these challenges. Specifically,

this approach transforms a general-purpose system to one optimized for transactions and

messaging. File cache accelerates transaction performance by providing the following

benefits to server operations:

 • It provides low-latency, high-speed access similar to main memory

 • Data stored in file cache is persistent, i.e., non-volatile

 • Access to file cache may be shared among multiple servers

 • The interface to file cache, either SCSI or Fibre Channel, follows standard

 industry protocol, eliminating the need for upgrade as the server operating

 system is upgraded and simplifying both installation and management.

At a logical level, Solid Data's file cache serves as a persistent extension of main
memory in which high-demand files are stored and protected - hence the name "file

cache."

3

Case Study: File Cache Triples
 SMS Performance

The rapid growth of the wireless market has required that companies quickly and easily

deploy systems that will not only handle the peak performance loads but also scale

effectively. Here, a small incremental investment in Solid Data file cache delivers

disproportionately large benefits in performance, scalability, and lower cost.

A major system integrator determined that its wireless Short Message Service Center

(SMSC) application was initially limited by moderate performance due to its design

architecture's dependence on disk subsystems. The integrator more than tripled its online

throughput and the speed of its nightly maintenance processes by storing its entire

wireless messaging database on mirrored pairs of Solid Data file-cache subsystems. The

current SMSC offering uses mirrored Solid Data file cache as a standard component of

the architecture to easily meet performance, scaling, availability and reliability SLAs,

contributing to the integrator's competitive advantage as one of the world's leading SMS

providers.

Figure 2. Short Messaging Acceleration
SMS Architecture: File Cache produced dramatic results,

improving message capacity per day by over 300% and reducing

cost per message by 65%. This improvement was achieved with an

incremental investment equal to 15% of the base cost.

4

HP-UX Servers

Oracle RDBMS

Solid Data File Cache —
Designed for Transactions and Messaging

Solid Data file cache technology is designed to meet the specialized performance and

availability needs of transaction processing and messaging applications, as well as

metadata access in file systems and storage networks.

 • Speed: Solid Data's file-caching technology delivers 2x-10x performance

 improvement compared to physical disks and RAID arrays. As file cache has

 virtually no latency compared to disk, small-block reads and writes have little

 impact on system performance in random-access applications. Furthermore,

 since the server no longer wastes processing power while waiting (and

 compensating) for mechanical disk I/O, its full power is made available to

 accomplish useful work.

 • Persistence: Unlike volatile RAM, Solid Data's technology delivers high

 transaction speed while also preserving data in the event of a system crash or

 power failure. Solid Data file caches use a combination of on-board UPS and

 physical data retention disk storage to protect the data until power is restored.

 • Shareability: Solid Data file cache is equipped with dual ports, facilitating

 high-availability server failover and clustering configurations. With data

 residing in external, shareable and non-volatile memory, surviving servers

 (after a failure occurs) are able to access file-cache data and continue to

 deliver critical applications and services.

 • Scalability: By eliminating I/O latency, file cache also minimizes CPU "wait"

 conditions, and greatly improves overall system performance. More

 performance per server means better and simpler scalability through modular

 enhancement of system processing power.

 • Reliability: File-cache data store is based on memory as opposed to

 mechanical disk, offering significant reliability advantages inherent in solid-

 state devices.

5

Advantages Over Traditional Approaches
to Transaction Performance Improvement

The performance problems of messaging and transaction-processing applications have

proved resistant to traditional solutions. While such approaches as tuning, adding servers

or memory, adding disks, striping data, or implementing cache LUNs have delivered

significant benefits in many applications, they fail to meet the particular needs of those

that require data persistence combined with random access and small-block I/O - needs to

which Solid Data file cache is ideally suited.

Tuning: One of the techniques most often used for achieving greater application

performance is application tuning. This may take the form of an in-depth code review for

custom applications, or, in the case of databases, a Database Administrator will analyze

the schema and normalize or de-normalize in an attempt to effect the desired goals. Most

applications can benefit marginally from tuning; nominally a 10-20 percent increase in

performance is typical. Moreover, since people already on staff do the work, performance

gains are often perceived as "free."

However, there are downsides to this method. Tuning requires highly experienced

technical specialists, and the process can be very time-consuming, often taking three to

six months. Tuning can also introduce new bugs. Finally, it entails a real opportunity cost:

how much revenue or productivity will the enterprise lose during the tuning effort? What

other problems might the in-house experts solve instead?

Adding Main Memory: Another common technique used to boost application

performance is adding main memory in order to give the application program more space.

This can reduce the swapping of virtual memory to disk as well as the application's need

for disk writes. Adding memory is relatively straightforward and easy to accomplish. If

the application is memory-starved, this technique can improve performance by as much

as 30-50 percent.

However, this too has disadvantages. One, volatility of server memory, is unacceptable in

high-value applications such as messaging and transactions - if the server crashes or loses

power, all data in memory will be lost. Another problem is that applications will often

require modification to take advantage of more main memory - and in some cases, when

source code is not available, these changes are impossible.

Finally, in some cases adding memory does nothing for performance. If the application is very

I/O intensive, adding memory may have little or no impact on performance. Before

committing to memory addition, it is helpful to analyze the problem with tools such as Solid

Data's I/O Dynamics (http://www.soliddata.com/products/iodynamics/).

6

Adding More CPUs/Servers: Most of today's midrange servers support more than one

CPU, and many IT experts resort to adding processors to boost performance. If a multi-

processor server has reached its maximum limit, the next step is adding an additional

server. This approach can often double an application's performance, and, if the

application is CPU-intensive - e.g. complex solid modeling and mathematical rotation -

this may be the only viable solution. Moreover, where multiple CPUs are involved, only

multi-threaded applications can scale across the CPUs; hence, many legacy applications

do not lend themselves to this method of performance scaling.

Here again, Solid Data's I/O Dynamics can be used to assess I/O behavior characteristics

before adding CPUs or servers.

Besides the obvious expense, this approach often entails hidden costs. Adding processors

increases maintenance and support fees for the server. Some software licensing is based

on MIPS or the number of processors, so adding new processors can lead to higher

licensing fees. A new server brings new requirements for floor space, maintenance,

power and cooling - often the annual maintenance costs can approach the cost of the

server itself.

Adding More Disks/Striping Data: Adding disks or striping data is an approach

ideally suited for bandwidth-intensive uses such as streaming video and processing of

large images, as commonly found in medical and scientific applications. Database

applications with very large data requests may also benefit from this method. Since disks

are relatively inexpensive, this solution can be very cost-effective for storage-intensive

applications.

However, maintenance costs for disk systems can approach eight times the cost of

acquisition. Also, adding more disks reduces MTBF.

Finally, adding disks may reduce average access time (latency), but not enough to

eliminate I/O-wait by the CPU, a central issue in transaction-intensive applications.

Arrays increase the number of megabytes per second the application can handle (via

higher overall transfer rates) but do not change the access time sufficiently to make the

system suitable for high transaction rates. The problem: response times of RAID

(Redundant Array of Independent Disks) or JBOD (Just a Bunch of Disks) storage are

limited by the slow mechanical access times of disks compared to the access speed of

solid-state devices.

7

Thus, for small-block, random-access, transaction-intensive applications, adding more

spindles will likely have nominal performance impact. This approach is analogous to

adding more lanes on a toll way - additional lanes add to the total capacity of the road,

but the actual volume of traffic is limited by the ability of the tollbooths to take payments

from the toll way traffic. Once the tollbooth payment limit is reached, more lanes do not

speed up traffic flow.

Here, tools like Solid Data's I/O Dynamics can be used to diagnose I/O patterns,

determine what files are impacting performance, and suggest which ones might best be

moved to file cache.

Cache LUNs (RAID Cache): For many years, cache LUNs have been available under

various trade names in larger storage-array systems from EMC, Hitachi, HP and Sun.

Faster than mechanical disk, a cache LUN is not as fast as a file cache, because the

memory it uses is designed to be an intermediate memory location, with rotating disk as

the final destination. Thus, along with the data it must include all the information

necessary to move the data to its final, persistent location. When transaction rates are

high, managing this additional information degrades storage-array performance to such

an extent that a separate, external file cache (which simply stores data in memory blocks

directly addressable by the host file system) is significantly faster.

A cache LUN consists of two parts: the actual cache memory, and specialized software

to reserve part of the cache and control its interface. A high-end storage array may

appear to have enough cache memory to support a cache LUN. However, because the

amount of intermediate (cache) memory storage is already orders of magnitude smaller

than the amount of disk storage, reserving any of this memory for cache LUN normally

impacts the performance of the entire storage system. Conversely, removing very high

transaction-rate data from RAID arrays allows substantially improved performance from

the RAID array on the remaining files.

Costs of cache LUN, however, can be high. RAID cache memory for high-end arrays is

very expensive and usually must be purchased in mirrored configurations. In addition,

recurring license fees are typically required for the software that controls the cache LUN,

thus adding operating expense to capital investment.

8

Speed and Persistence: Figure 3 summarizes these considerations in terms of two

dimensions: transaction volume (required throughput, or infrastructure speed) and

transaction persistence. File cache delivers high speed and high persistence for

messaging and transaction processing - without multiplying the number of inefficiently-

utilized servers.

9

T
ra

n
sa

ct
io

n
 P

er
si

st
e

n
ce

T
ra

n
sa

ct
io

n
 P

er
si

st
e

n
ce

Transact ion VolumeTransact ion Volume

RAID CacheRAID Cache File Cache
 - or -

Additional Servers

JBOD Memor y

High

Low

HighLow

Figure 3. Approaches for Improving
Transaction Performance

While many techniques are used to improve

performance, file cache is the most cost-effective

method for achieving high transaction rates with-

out exposure to data loss.

Figure 4. Real-Time Securities Trading
Application

Solid Data file cache enables the electronic trading

server to deliver real-time market information

with powerful functionality.

1GB Solid Data Mirrored File Cache

Client Workstations
Eurex

Stockholm
London

Real-Time Market Data Feeds

Solaris Server

Trading SW

Electronic Trading Server

Exchanges

Case Study: File Cache Speeds Up
 Trading

A European software company develops one of the world's leading real-time electronic

trading and risk-management software applications, for international electronic markets

in financial commodities and energy. By displaying and analyzing real-time information

feeds from multiple trading exchanges, the software provides a rich information

environment and powerful decision-support tools. It offers advanced functionality for

analysis and pricing, trading and risk management, providing its users with the ability to

trade simultaneously on multiple electronic marketplaces and to manage massive order

flows for automated straight-through processing. In addition, the system contains

advanced calculation models for pricing various derivative instruments.

While this system provides good performance on general-purpose servers, its response

time to high-volume trading and fast market changes was limited by the disk subsystem's

inherent high latency and inability to provide quick responses to trade requests. This

resulted in system delays to traders, reducing trading profits during peak trading periods.

By utilizing a Solid Data file cache to provide the lowest latency for randomly accessed

key database files, the company found that the system not only benefited from improved

response times, but also captured additional CPU capacity that had previously been lost

to I/O wait conditions.

10

Optimizing Results With File Cache —
Design Guidelines

To achieve best results with file cache, it is often necessary to forego techniques that

have been beneficial in more traditional contexts. For example, many legacy programs -

applications, file systems, operating systems and device drivers - are built on the

assumption that all data resides on mechanical disk drives. To optimize these programs

for disk-based data access, software designers have incorporated features that are

unnecessary and wasteful when the data is located on the near-zero latency file cache.

For example, read-ahead caching is a useful technique for minimizing the impact of

mechanical-disk latencies, but it is counterproductive when applied to data placed in

external, persistent file cache. In this situation, read-ahead caching just fills up the I/O

channel with unnecessary data traffic, which can greatly reduce the effective

performance of a zero-latency, random-access device.

Based on experience with a wide range of applications and environments, Solid Data

recommends the following design guidelines:

 • Turn off read-caching functions at higher levels in the software stack when

 accessing data from a file cache.

 • Specify Direct I/O (where supported) when mounting file systems that are

 stored on file cache.

 • Place log files and swap files on file cache.

 • For transaction-intensive applications that occupy less than 20GB, consider

 placing the entire application on a file cache.

 • Place message queues on file cache, but place large message stores or

 mailboxes on mechanical disk.

 • Move database indexes to file cache, especially when sorts and queries apply

 multiple indexes or the application generates frequent inserts and deletes.

 • Partition a large, complex data file to segregate the most active data into a

 separate file. Then place the resulting hot file on file cache.

 • Consider file cache for file-system metadata and shared name spaces - and for

 address tables in storage-virtualization architectures.

Solid Data also offers architectural evaluation services and related software tools. These

can help solution architects optimize the use of memory and storage devices by making

well-informed choices about system configurations and data-access methods.

11

Summary

Characterized by the need to process large amounts of random data in real time,

messaging and transaction-processing systems historically have suffered I/O

performance problems. Moreover, because these applications require speed, data

persistence, scalability and high availability, as well as cost-effectiveness, traditional

solutions have not proven satisfactory.

File cache, using Solid Data's solid-state disk technology, offers a new approach that is

ideally suited to the needs of these applications. File cache enables enterprises to get the

most benefit from their existing equipment while achieving the performance, scalability,

and cost advantages necessary for successful deployments. Already delivering

significant benefits to providers of messaging and transaction-processing services, file

cache has even greater potential benefits for a wide range of growing applicaitons.

 ®

The Solid Data logo is a registered trademark in the United
States and Japan. All other brands, or products are the
trademarks or registered trademarks of their respective
owners. Solid Data disclaims any proprietary interest in
the trademarks of others.

Solid Data Systems • 3542 Bassett Street • Santa Clara, CA 95054 • USA • Tel: +1.408.845.5700 • Fax: +1.408.727.5496 • www.soliddata.com • Printed in the USA 05/02 ©Copyright Solid Data Systems 2002 All Rights Reserved.

12

13

